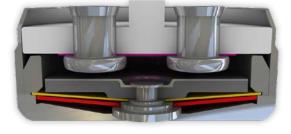
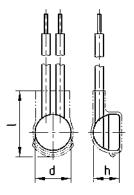

DATENBLATT


Schutz-Temperatur-Begrenzer SR6

Baureihe R6

Aufbau und Funktion

Ein unverlierbar ineinander vernietetes Schaltwerk bestehend aus einer beweglichen und umlaufenden Kontaktbrücke (1), einem Kontaktträgerbolzen (2), einer Federschnappscheibe (3) und einer Bimetallscheibe (4), ist formschlüssig und selbstausrichtend zwischen einem nicht stromführenden Gehäuseboden (5) und einem Widerstandskeramikträger (6) mit zwei integrierten, stationären Kontakten (7) als Elektroden, eingespannt. Dabei wird das Schaltwerk mit der als Stromübertragungsglied fungierenden Kontaktbrücke (1) von der Federschnappscheibe (3), die zwischen einer Auflageschulter und einem umlaufenden Ring gehalten wird, getragen. Die unter ihr liegende, ebenfalls vom Kontaktträgerbolzen (2) durchragte Bimetallscheibe (4) kann somit freiliegend von mechanischen Belastungen kontinuierlich arbeiten, ohne dass der durch die Federschnappscheibe (3) definierte Kontaktdruck abnimmt. Sobald die Bimetallscheibe (4) ihre Nennschalttemperatur erreicht, springt sie gegen die Stellkraft der Federschnappscheibe (3) wirkend in ihre umgekehrte Lage. Die Kontakte (7) werden schlagartig geöffnet. Die parallel geschaltete Widerstandskeramik (6) hält nun die Betriebsspannung und entfaltet unabhängig von der Umgebungstemperatur eine elektrische Heizleistung auf das Schaltwerk und hält es dauerhaft oberhalb der Rücksprungtemperatur, sodass es nicht zurückschalten kann. Die Kontakte bleiben geöffnet. Erst nach Wegfall der externen Betriebsspannung bzw. Netztrennung kann der Temperaturbegrenzer wieder abkühlen und in den ursprünglichen Schließzustand zurückschalten.



Merkmale:

Hohe Ansprechempfindlichkeit	durch Messinggehäuse und geringe Schaltermasse
Ausgezeichnete Langzeitstabilität	Silberkontakte, reproduzierbare Schalttemperaturwerte durch thermisch vergütete, mechanisch und elektrisch unbelastete Bimetallscheibe. Geringstmöglicher Kontaktabbrand
Momentschaltung	mit stets gleichem Kontaktdruck bis zum Nennschaltzeitpunkt
Sehr kurze Prellzeiten	< 1 ms
Temperaturbeständigkeit	durch den Einsatz hochtemperaturbeständiger Materialien

Bauhöhe h	ab 7,0 mm
Durchmesser d	10,7 mm
Länge der Isolationskappe l	17,5 mm

Mögliche Nennschalttemperatur in 5°C Stufen		70 °C - 180 °C		
Toleranz NST ≤ 140 °C		±5 K		
Toleranz NST > 140 °C		±10 K		
Rückschalttemperatur (RST) unterhalb NST	UL	≥ 35 °C		
(definierte RST auf Kundenwunsch möglich)	VDE	≥ 35 °C		
Bauhöhe		ab 7,0 mm		
Durchmesser		10,7 mm		
Länge der Isolationskappe		17,5 mm		
Imprägnierbeständigkeit *		geeignet		
Geeignet zum Einbau in Schutzklasse		+		
Druckbeständigkeit des Schaltergehäuses *		600 N		
Standardanschluss	Litze	e 0,75 mm ² / AWG18		
Verfügbare Approbationen (bitte angeben)	IEC; ENEC; VDE; UL; CSA; CQC			
Betriebsspannungsbereich AC / DC		bis 250 V AC		
Bemessungsspannung AC	120 V / 230 V (VDE) 250 V (UL)			
Bemessungsstrom AC $\cos \varphi = 1.0 / Zyklen$		10,0 A / 1.000		
Bemessungsstrom AC $\cos \varphi = 0.6$ / Zyklen		6,3 A / 1.000		
Max. Schaltstrom AC $\cos \varphi = 1.0 / Zyklen$		25,0 A / 1.000		
Hochspannungsfestigkeit		2,0 kV		
Gesamtprellzeit		< 1 ms		
Kontaktwiderstand (nach MIL-STD. R5757)		\leq 50 m Ω		
Vibrationsfestigkeit bei 10 60 Hz		100 m/s ²		

Typ: Öffner; nicht automatisch rückstellend; spannungsgehalten; mit Anschlussleitungen; mit Epoxy; Isolierung: Mylar®-Nomex®

Stromempfindlichkeit bei I_{nenn}:

abhängig von:

- thermischer Ankopplung
- Anwendungsbereich
- Einbaubedingungen
- Beeinflussung von außen
- Leitungslänge
- Leitungsquerschnitt

	Stromeigenerwärmung R6							
	0 -							
2	-5 -							
Änderung der Schalttemperatur [-10 -							
ərung	-15 -							
Änd	-20 -							
Sch	-25 -							
	-30 -		, ,	1 6		3 10		
	Strom [A]							

Beispiel Markierung:

Markenzeichen -

Typ / Ausführung —

NST [°C]. Toleranz [K] —

Betriebsspannung [V] — 230~

Bestellbeispiel: SR6 - 125. 05 0100 / 0100 / 230V Typ / Ausführung -Nennschalttemp. [°C] -Toleranz [K] Leitungslängen [mm] Betriebsspannung [V]

Weitere Ausführungsvarianten der Baureihe R6:

• CR6 – mit Epoxy, ohne Isolierung

www.thermik.de/data/CR6

Trach Thermik Test + Bestellerse lige Felleverwendungsvogaben, die von unseren Standards abweichen, werden nicht auf Applikationsfähigkeit und/oder Normenkonformität überprüft. Die Prüfung einer

— 125.05